

The Kentucky Climate Center: An Overview of Assets

Stuart A. Foster & Rezaul Mahmood Kentucky Climate Center Western Kentucky University

Kentucky Farm Bureau Water Management Working Group April 29, 2015

Kentucky Climate Center (KCC) Assets

- The KCC serves as the State Climate Office for Kentucky and is affiliated with a tiered network consisting of State Climate Offices, Regional Climate Centers, and the National Centers for Environmental Information (formerly the National Climatic Data Center)
 - The Kentucky Mesonet, a statewide infrastructure for weather and climate monitoring was built and is operated by the KCC
- The KCC has expertise in meso-scale atmospheric modeling and weather forecasting using models that leverage WKU's High Performance Computing Cluster
- The KCC leverages WKU's Meteorology Program, which includes 6 Ph.D. faculty and approximately 50 undergraduate students

Drought of 2012

Agriculture

Drought of 2012

Palmer Drought Severity Index Western Climate Division, KY

Continental Evolution of 2012 Drought

Drought of 2012

AMJ and JAS Precipitation, 1895-2011

<u>Notes</u>

- Vertical blue line represents average¹ AMJ precipitation.
- Horizontal blue line represents average¹ JAS precipitation.
- Vertical red line represents actual 2012 AMJ precipitation.
- Dashed red line represents precipitation for JAS of 2012 required to bring the combined AMJ and JAS total to the average¹. ¹ Average is defined as the arithmetic mean of the climate division values for 1895 through 2011.

Dimensions of the 2012 Drought

Mayfield, Graves County July 27, 2012

Graves County

- 3.22" Precipitation on March 8th
- 4.40" Precipitation for the entire spring season
- 99.4° Average high temperature from June 28th through July 8th

Historical Context for the Drought of 2012

KENTUCKY

CF

Kentucky's Western Climate Division

KENTUCKY CLIMATE CENTER

Synoptic Precipitation Pattern in Late July

July 24, 2012

Drought of 2012

Evolution of the 2012 Drought in Kentucky

KENTUCKY

R

ΚΕΝ

CKY

Kentucky's diverse terrain creates distinct local vulnerabilities to weather and climate

Funding

- Construction Phase
 - Approximately \$3,000,000 project funded through the National Weather Service to the Kentucky Climate Center
- Operational Phase
 - WKU
 - Federal
 - State
 - Local

The Western Kentucky University

News Release

News & Events
Media Relations
News Archives
Photo Gallery
Echo Magazine
WKU Calendars
WKU Home

Kentucky Mesonet Recognized As Official Climate Data Source

April 06, 2006

Bowling Green, Ky. - Gov. Ernie Fletcher has signed a resolution recognizing the Kentucky Mesonet as the official source of climatological observations for the state.

Across the Commonwealth

ΚE

CKY

Kentucky Mesonet Coverage Map

Vertically Integrated System

High-Quality Sites for High-Quality Data

Sites are representative of their surrounding areas

Site Selection Activities

Site selection decisions combine information from site surveys with input from NWS representatives and local officials

Temperature	40
Precipitation	30
Wind	12
Soil	15
Total	97

Plateau, 1003'

Valley, 554'

Paired Sites

- Areas of complex topography cannot be well represented by a single site
- The most representative site may not be the nearest site
- An example is provided by the paired stations in Metcalfe County and Cumberland County

Layout for Solar-powered Site

- A. Wind Monitor
- B. Relative Humidity Sensor
- C. Datalogger Enclosure
- D. Temperature Sensors
- E. Pyranometer
- F. Wetness Sensor
- G. Single Alter Shield
- H. Precipitation Gauge
- I. Battery Enclosure
- J. Solar Panel

Guy wires not shown. Drawing not to scale

Station Installation and Maintenance

- Technicians install stations and instrumentation
- Technicians make spring, summer, and winter maintenance passes
- Technicians respond to "trouble tickets" when QA processes indicate problems

Design Criteria Emphasize Quality and Reliability

Temperature

Precipitation

Sensor Package

- Air temperature
- Precipitation
- Solar radiation
- Relative humidity
- Wind speed & direction
- Soil moisture & temperature*

* selected sites

Preparation for Soil Monitoring

- A soil scientist on site during takes soil samples in conjunction with the installation of soil probes
- Soil samples are subsequently analyzed in a laboratory to produce a detailed pedon description

Installation of Soil Probes

- The soil plot hole is excavated at 130° and 10 feet from the tower base
- A *Stevens Hydraprobe II* is installed at each of five depths: 2", 4", 8", 20", and 40"
- Probes are installed into the side of the hole to ensure placement in undisturbed soil, except the sensor at 40" is installed straight down at the bottom of the hole
- The hole is backfilled progressively as each sensor is installed and the sensor cable is manipulated near the sensor head to ensure that the it will not act as a conduit for water to pool at the head of the probe

Metadata Database

KENTUCKY

	Equipment History										
	Calibration History										
			Performed By	Calibration Location	Equipment Used	Variable	Equation	Manage Sites			
	2008-04-04 16:55:0	Dana Grabowski	KYMN LAB	Fluke 7380 High Pre	TA01	0.9968X+-0.0511					
		2008-04-04 16:55:0	Dana Grabowski	KYMN LAB	Fluke 7380 High Pre	TA02	0.9968X+-0.0511	Manage Equipment			
Manage Sites					User: aquilligan		0,9968X+-0.0511				
Add/Modify Collection Site	Add Non-Collection Site	s Site Pass Site Sta	itus		KYMN	•					
Move Equipment At S											
All Sites Russellville 2 W					Manage Equip	ment 1	19:34:00				
Manufacturer	Model	Serial No	Vendor	Туре		3	20:04:00				
AirLink	Raven Edge E3214	0638149585	Campbell Scientifi	c Cellula	r Modem	A 3	19:34:00				
Vaisala	VRG101	B45102	Vaisala	Weighi	ng Bucket						
Campbell Scientific	CR3000-XT-SW-NB-NC	1353	Campbell Scientifi	Microlo	gger	=					
Thermometrics	316-125-1000CR-385-4-TL3	7	Thermometrics	PRT	PRT		l time in field: 911+ days				
Kyocera	KC125TM	058101920	Solar Craft		Solar Panel		Location				
Kyocera	KC125TM	058101359	Solar Craft	Solar P	Panel		Bowling Green 5 S				
R M Young Company	05103-5	WM00075165	R.M. Young		Wind Monitor		Laboratory				
Vaisala	HMP45C	B3220026	Campbell Scientific Ten		emp/RH probe						
^^ Move Up ^^ Vv M	ove Down vv Effective Time	December 🔻 16	▼ 2010 ▼	19 🔻 : 59 🔹	UTC	1000					
Non-Collection Site Labora	tory 🔻										
Manufacturer	Model	Serial No	Vendor	Туре							
Thermometrics	316-125-1000CR-385-4-TL3	134	Thermometrics	PRT							
R M Young Company	05103-5	WM00075175	R.M. Young		d Monitor						
Thermometrics	316-125-1000CR-385-4-TL3	138	Thermometrics	PRT	PRT						
Vaisala	HMP45C	B3230034	Campbell Scientific		Temp/RH probe						
Met-One Instruments	076-В	F7077	Met-One Instruments Asp		pirated Shield						
Thermometrics	ometrics 316-125-1000CR-385-4-TL3 9		Thermometrics PRT		т						
Thermometrics	316-125-1000CR-385-4-TL3	8	Thermometrics		RT						
R M Young Company	05103-5	WM00075174	R.M. Young	Wind M	Ionitor						
Apogee Instruments Inc.	PYR-P	4048	Apogee	Silicon	Pyranometer						

Network Communications

TUCKY

KEN

Quality Assurance Procedures

- Automated QA runs on fiveminute data as they are collected from remote sites
- Manual QA is implemented on a daily basis to provide expert assessment of system performance

Meteorological Database

KYMN, ALBN, TBL 5min, "2010-05-01 11:15:00", "2010-05-01 06:15:00 CDT", "2010-05-01 05:15:00 CST", 69.435, 78.7, 9.58, 171.4, 14.76, 173.8, 9.39, 0.0000 KYMN, ALBN, TBL 5min, "2010-05-01 11:20:00", "2010-05-01 06:20:00 CDT", "2010-05-01 05:20:00 CST", 69.603, 78.4, 11.68, 172.0, 18.70, 169.7, 9.23, 0.0000 KYMN, ALBN, TBL 5min, "2010-05-01 11:25:00", "2010-05-01 06:25:00 CDT", "2010-05-01 05:25:00 CST", 69.530, 78.7, 9.31, 168.7, 15.64, 174.6, 9.88, 0.0000 KYMN, ALBN, TBL 5min, "2010-05-01 11:30:00", "2010-05-01 06:30:00 CDT", "2010-05-01 05:30:00 CST", 69.563, 78.6, 9.36, 173.0, 15.56, 179.9, 11.37, 0.0000 KYMN,ALBN,TBL 5min,"2010-05-01 11:35:00","2010-05-01 06:35:00 CDT","2010-05-01 05:35:00 CST",69.685,78.4,9.85,185.0,15.13,191.5,18.62,0.0000 KYMN ALBN, TBL 5min, "2010-05-01 11:40:00", "2010-05-01 06:40:00 CDT", "2010-05-01 05:40:00 CST", 69.819, 78.4, 10.14, 186.0, 14.54, 218.8, 27.18, 0.0000 ALEN, TBL 5min, "2010-05-01 11:45:00", "2010-05-01 06:45:00 CDT", "2010-05-01 05:45:00 CST", 69.697, 78.7, 9.78, 181.3, 15.35, 176.3, 39.70, 0.0000 KYMN "2010-05-01 11:50:00", "2010-05-01 06:50:00 CDT", "2010-05-01 05:50:00 CST", 69.768, 78.7, 11.54, 180.8, 16.52, 178.5, 54.86, 0.0000 ALBN,TBL 5min,"2010-05-01 11:55:00","2010-05-01 06:55:00 CDT","2010-05-01 05:55:00 CST",69.827,79.0,11.24,174.2,18.28,177.0,61.12,0.0000 CDT", "2010-05-01 bservations are taken every 5 minutes Each station collects over 105,000 observations each on returns over 2,730,000 data values CDT", "2010-05-01 CDT", "2010-05-01 07:40:00 9.76.33.4.15.78.29.3.17.30.0.0075 CDT", "2010-05-01 07:50:00 CST", 63.601, 92.3, 4.94, 333.7, 11.69, 352.1, 3.46, 0.0055 ALBN, TBL 5min, "2010-05-01 13:50:00","2010-05-01 08:50:00 13:55:00","2010-05-01 08:55:00 CDT","2010-05-01 07:55:00 CST", 63.360, 93.7, 8.65, 277.6, 13.30, 267.7, 4.94, 0.0000 KYMN ALBN, TBL 5min, "2010-05-01 KYMN ALBN, TBL 5min, "2010-05-01 14:00:00", "2010-05-01 09:00:00 CDT", "2010-05-01 08:00:00 CST", 63.031, 95.5, 8.67, 260.5, 13.52, 263.5, 12.52, 0.0075 KYMN ALBN, TBL 5min, "2010-05-01 14:05:00", "2010-05-01 09:05:00 CDT", "2010-05-01 08:05:00 CST", 62.747, 96.5, 6.38, 234.9, 9.28, 242.9, 7.74, 0.2417 KYMN ALBN, TBL 5min, "2010-05-01 14:10:00", "2010-05-01 09:10:00 CDT", "2010-05-01 08:10:00 CST", 62.683, 96.8, 3.83, 199.5, 7.02, 221.7, 7.25, 0.1386 KYMN, ALBN, TBL 5min, "2010-05-01 14:15:00", "2010-05-01 09:15:00 CDT", "2010-05-01 08:15:00 CST", 62.636, 97.0, 2.59, 144.1, 4.24, 134.5, 7.09, 0.0622 ALBN, TBL 5min, "2010-05-01 14:20:00", "2010-05-01 09:20:00 CDT", "2010-05-01 08:20:00 CST", 62.559, 97.2, 2.78, 89.4, 6.43, 105.1, 12.19, 0.0457 KYMN KYMN, ALBN, TBL 5min, "2010-05-01 14:25:00", "2010-05-01 09:25:00 CDT", "2010-05-01 08:25:00 CST", 62.621 97.4,5.21,97.7,7.67,98.1,16.81,0.0169 KYMN ALBN, TBL 5min, "2010-05-01 14:30:00", "2010-05-01 09:30:00 CDT", "2010-05-01 08:30:00 CST", 62.676, 97.4, 5.28, 97.7, 6.65, 87.7, 22.74, 0.0150 ALBN, TBL 5min, "2010-05-01 14:35:00", "2010-05-01 09:35:00 CDT", "2010-05-01 08:35:00 CST", 63.001, 97.2, 3.18, 121.4, 5.70, 103.8, 28.01, 0.0126 KYMN ALBN, TBL 5min, "2010-05-01 14:40:00", "2010-05-01 09:40:00 CDT", "2010-05-01 08:40:00 CST", 63.127, 96.7, 3.38, 133.0, 4.17, 117.5, 30.98, 0.0094 KYMN ALBN, TBL 5min, "2010-05-01 14:45:00", "2010-05-01 09:45:00 CDT", "2010-05-01 08:45:00 CST", 63.066, 96.5, 4.11, 159.0, 6.21, 148.4, 36.58, 0.0110 KYMN 14:50:00", "2010-05-01 09:50:00 CDT", "2010-05-01 08:50:00 CST", 62.905, 96.7, 4.07, 147.8, 5.77, 121.1, 35.43, 0.0122 KYMN, ALBN, TBL 5min, "2010-05-01 14:55:00", "2010-05-01 09:55:00 CDT", "2010-05-01 08:55:00 CST", 62.875, 96.8, 2.55, 139.6, 4.17, 146.7, 38.07, 0.0138

Kentucky Mesonet News

New kymesonet.org Website

Welcome to the newest edition of the Kentucky Mesonet's website. If you would like a quick tour <u>click here</u>. If you are experiencing any visual weirdness try clearing your browsers cache+cookies. A big thanks to everyone who took the time to help with our beta testing and providing feedback, we really appreciate your help!

Franklin County / Frankfort, KY (7 S) Mesonet Site

Western Kentucky University - Kentucky Mesonet - 1906 College Heights Blvd #31066 - Bowling Green, KY 42101 - 270.745.4567 - kymesonet@wku.edu

report a bug

		С	ampb	ell Co	unty (H	HTS)	~	MA	Y 💌	2012	v (Select				
Monthly Climatological Summary							ıry	Statio	n ID:	HHTS						
								Relative Location:				Alexandria 5 NW				
(5/2012)								County:				Campbell County				
	KENTUCKY							*Location:				Lat: 39.02°; Lon: -84.47°				
		ME	SOL	VET.	-11			Elevation:				838 ft.				
							Observation Day:					Eastern Standard Time				
	-10 treater titeorean															
		Temperature (°F)				Degre	e Days	s Humidity (%)			Wind Speed (mph) and				Solar	
Day	Date		,							Precip	Direction				(MJ/	
		Max	Min	Avg	Dwpt	HDD	CDD	Max	Min	(incit)	Dir	Spd.	Spd.	3-sec	m ²)	
TUE	1	78.0	61.6	69.8	62.5	0	5	98	66	0.83	SE	1.8	3.7	22.8	17.2	
WED	2	85.2	60.6	72.9	62.4	0	8	<u>99</u>	43	0.00	SSE	2.8	4.5	19.4	26.4	
THU	3	83.1	64.9	74.0	63.5	0	9	92	49	0.00	SSE	2.7	3.7	15.1	23.9	
FRI	4	80.9	64.9	72.9	64.1	0	8	93	58	0.02	S	1.9	2.9	13.4	17.8	
SAT	5	77.3	63.9	70.6	64.2	0	6	98	60	0.61	N	1.5	3.0	11.8	15.6	
SUN	6	81.0	58.3	69.7	60.4	0	5	96	42	0.00	ENE	1.3	2.6	8.5	26.2	
MON	7	82.7	63.5	73.1	63.0	0	8	98	47	0.55	SE	2.8	4.3	21.3	23.8	
TUE	8	70.7	59.3	65.0	57.0	0	0	99	53	0.21	WNW	3.4	4.3	15.8	17.4	
WED	9	68.7	52.8	60.8	45.6	4	0	81	32	0.00	WNW	5.6	5.7	24.0	23.9	
THU	10	66.6	45.6	56.1	39.1	9	0	83	31	0.00	NW	4.6	5.2	18.8	30.1	
FRI	11	71.4	43.1	57.6	37.9		0	89	22	0.00	SE	2.8	3.3	12.5	31.0	
SAL	12	60.5	40.4	59.9	40.7	5	0	00	29	4.54	SE E	2.4	2.0	11.0	20.1	
MON	14	73.1	58.1	65.6	56.7	0	1	90	10	0.00	NNE	3.0	3.5	15.6	21.3	
TUF	15	77.9	54.4	66.1	55.1	0	1	98	33	0.00	SSE	17	2.6	11.3	27.1	
WED	16	79.4	58.6	69.0	51.5	0	4	87	34	0.02	NNW	1.4	4.7	20.8	24.8	
THU	17	70.2	52.1	61.1	35.8	4	0	60	23	0.00	ENE	5.5	5.7	22.0	31.9	
FRI	18	77.7	49.1	63.4	44.0	2	0	79	27	0.00	E	1.8	2.7	9.5	31.3	
SAT	19	82.6	54.2	68.4	52.0	0	3	91	24	0.00	E	0.9	2.0	11.3	30.5	
SUN	20	83.7	60.3	72.0	55.7	0	7	89	32	0.00	ESE	2.1	3.0	16.7	29.4	
MON	21	80.2	60.1	70.2	57.9	0	5	94	48	0.30	WNW	3.5	4.8	23.9	26.5	
TUE	22	70.7	56.9	63.8	56.5	1	0	91	60	0.00	NNW	3.0	3.5	12.4	14.8	
WED	23	76.0	57.1	66.5	58.2	0	2	97	50	0.00	ESE	0.6	2.4	9.8	18.7	
THU	24	81.7	59.6	70.7	59.6	0	6	96	43	0.00	SE	4.9	5.1	18.5	26.5	
FRI	25	86.0	65.2	75.6	62.1	0	11	77	46	0.00	SSE	3.7	4.2	14.8	24.9	
SAT	26	88.1	68.3	78.2	65.2	0	13	92	40	0.00	SE	2.6	2.8	11.1	29.3	
SUN	27	87.9	68.4	78.1	66.2	0	13	96	41	0.00	SE	2.6	2.9	10.2	27.6	
TUE	20	<u>88.1</u>	70.4	79.3	67.5	0	14	90	40	0.00	SSE	3.3	3.1	14.9	20.8	
WED	29	10.4	63.0	72.0	53 A	0	7	97	26	0.00	- SVV	1.2	3.0	20.1	30.5	
THU	31	77.9	55.4	66.6	51.2	0	2	97	33	0.00	F	1.6	3.9	15.7	27 4	
Mo	nthly	11.5	00.4	00.0	01.2		<u> </u>	31	33	0.71	L	1.0	3.5	10.1	21.4	
Ave	rage	78.0	58.8	68.4	56.1			91	43		SE	0.6	3.7	16.1		
Mor	nthly					38	142			5.10					740 7	
То	otal					30	143			0.10					740.7	

Kentucky Mesonet, Hopkins County, June 24, 2013

➤ 5.92 inches of rain in less than four hours

Estimated as a 500-year event based on NOAA NWS Atlas 14

In a changing climate, extreme precipitation events are expected to become more frequent.

Atmospheric Modeling and Forecasting

Weather Forecast Model Run

Experimental Product from the Kentucky Climate Center

Model initialized with observations from the Kentucky Mesonet.

Atmospheric Modeling and Forecasting

Sample Point Forecast

Experimental Product from the Kentucky Climate Center

- **Custom point forecasts** with 36-hour lead time
- Model runs on WKU's • **High-performance Computing Cluster**

36 42 48

Time (hours)

54 60 66 72

18 24 30

Questions and Discussion